Prueba χ²

En estadística y estadística aplicada se denomina prueba χ² (pronunciado como «ji al cuadrado»[1] y a veces como «chi al cuadrado») a cualquier prueba en la que el estadístico utilizado sigue una distribución χ² si la hipótesis nula es cierta. Algunos ejemplos de pruebas χ² son:

  • La prueba χ² de frecuencias
  • La prueba χ² de independencia
  • La prueba χ² de bondad de ajuste

Historia

En el siglo XIX, los métodos de análisis estadístico se aplicaban principalmente en el análisis de datos biológicos y era habitual que los investigadores asumieran que las observaciones seguían una distribución normal, como Sir George Airy y Mansfield Merriman, cuyos trabajos fueron criticados por Karl Pearson en su artículo de 1900.[2]

A finales del siglo XIX, Pearson se dio cuenta de la existencia de una asimetría significativa en algunas observaciones biológicas. Para modelar las observaciones independientemente de que fueran normales o sesgadas, Pearson, en una serie de artículos publicados entre 1893 y 1916,[3][4][5][6] desarrolló la distribución de Pearson, una familia de distribuciones de probabilidad continua, que incluye la distribución normal y numerosas distribuciones sesgadas, y propuso un método de análisis estadístico consistente en utilizar la distribución de Pearson para modelar las observaciones y realizar pruebas de bondad de ajuste para determinar cun bien un modelo se ajusta a las observaciones.

Prueba chi-cuadrado de Pearson

En 1900, Pearson publicó un trabajo[2] sobre la prueba χ2 el cual es considerado uno de las piedras fundacionales de la estadística moderna.[7] En este trabajo, Pearson investigó una prueba de bondad de ajuste.

Suponiendo que se clasifican n observaciones de una muestra aleatoria de una población en k clases mutuamente exclusivas con número respectivos observados xi (para i = 1,2,…,k), y una hipótesis nula de la probabilidad pi que una observación se encuentre dentro de la clase i-ésima. Por lo que se tienen los números esperados mi = npi para todo i, donde

Pearson propuso que, bajo la hipótesis de que la hipótesis nula es cierta, en la medida que n → ∞ la distribución límite de la cantidad indicada abajo es la distribución χ2.

Prueba de chi-cuadrado para la varianza en una población normal

Si se toma una muestra de tamaño n de una población que tiene una distribución normal, entonces hay un resultado (ver distribución de la varianza de la muestra) que permite realizar una prueba de si la varianza de la población tiene un valor predeterminado. Por ejemplo, un proceso de fabricación podría haber estado en condición estable durante un largo período, lo que permitió determinar un valor para la varianza esencialmente sin error. Suponga que se está probando una variante del proceso, lo que da lugar a una pequeña muestra de n elementos de producto cuya variación se va a probar. El estadístico de prueba T en este caso, podría establecerse como la suma de cuadrados de la media de la muestra, dividida por el valor nominal de la varianza (es decir, el valor que se probará como sostenido). Entonces T tiene una distribución chi-cuadrado con n - 1 grados de libertad. Por ejemplo, si el tamaño de la muestra es 21, la región de aceptación para T con un nivel de significancia del 5% está entre 9,59 y 34,17.

Aplicaciones

En el criptoanálisis, la prueba chi-cuadrado se utiliza para comparar la distribución del texto plano y el texto cifrado (posiblemente) descifrado. El valor más bajo de la prueba significa que el descifrado tuvo éxito con alta probabilidad.[8][9] Este método puede generalizarse para resolver problemas criptográficos modernos.[10]

En bioinformática, la prueba de chi-cuadrado se utiliza para comparar la distribución de ciertas propiedades de los genes (por ejemplo, el contenido genómico, la tasa de mutación, la agrupación de redes de interacción, etc.) pertenecientes a diferentes categorías (por ejemplo, genes de enfermedades, genes esenciales, genes de un determinado cromosoma, etc.).[11][12]

Referencias

  1. «“ji cuadrada” o “ji al cuadrado”». Fundéu. Consultado el 1 de septiembre de 2021.
  2. Pearson, Karl (1900). «Sobre el criterio de que un sistema dado de desviaciones de lo probable en el caso de un sistema correlacionado de variables es tal que puede suponerse razonablemente que ha surgido del muestreo aleatorio». Philosophical Magazine. Serie 5 50 (302): 157-175. doi:10.1080/14786440009463897.
  3. Pearson, Karl (1893). «Contribuciones a la teoría matemática de la evolución [abstract]». Proceedings of the Royal Society 54: 329-333. JSTOR 115538. doi:10.1098/rspl.1893.0079.
  4. Pearson, Karl (1895). «Contribuciones a la teoría matemática de la evolución, II: Variación oblicua en material homogéneo». Philosophical Transactions of the Royal Society 186: 343-414. Bibcode:1895RSPTA.186..343P. JSTOR 90649. doi:10.1098/rsta.1895.0010.
  5. Pearson, Karl (1901). «Contribuciones matemáticas a la teoría de la evolución, X: Suplemento a una memoria sobre la variación sesgada». Philosophical Transactions of the Royal Society A 197 (287-299): 443-459. Bibcode:1901RSPTA.197..443P. JSTOR 90841. doi:10.1098/rsta.1901.0023.
  6. Pearson, Karl (1916). «Contribuciones matemáticas a la teoría de la evolución, XIX: Segundo suplemento a una memoria sobre la variación sesgada». Philosophical Transactions of the Royal Society A 216 (538-548): 429-457. Bibcode:1916RSPTA.216..429P. JSTOR 91092. doi:10.1098/rsta.1916.0009.
  7. Cochran, William G. (1952). «The Chi-square Test of Goodness of Fit». The Annals of Mathematical Statistics 23 (3): 315-345. JSTOR 2236678. doi:10.1214/aoms/1177729380.
  8. «Estadística chi-cuadrado». Practical Cryptography. Archivado desde el original el 18 de febrero de 2015. Consultado el 18 de febrero de 2015.
  9. com/2014/06/15/using-chi-squared-to-crack-codes/ «Using Chi Squared to Crack Codes». IB Maths Resources. British International School Phuket.
  10. Ryabko, B. Ya.; Stognienko, V. S.; Shokin, Yu. I. (2004). «Una nueva prueba de aleatoriedad y su aplicación a algunos problemas criptográficos». Journal of Statistical Planning and Inference 123 (2): 365-376. Consultado el 18 de febrero de 2015.
  11. Feldman, I.; Rzhetsky, A.; Vitkup, D. (2008). «Propiedades de la red de genes que albergan mutaciones de enfermedades heredadas». PNAS 105 (11): 4323-432. Bibcode:2008PNAS..105.4323F. PMC 2393821. PMID 18326631. doi:10.1073/pnas.0701722105.
  12. «chi-square-tests». Archivado desde el original el 29 de junio de 2018. Consultado el 29 de junio de 2018.

Bibliografía

  • Weisstein, Eric W. «Chi-Squared Test». En Weisstein, Eric W, ed. MathWorld (en inglés). Wolfram Research.
  • Corder, G.W., Foreman, D.I. (2009).Nonparametric Statistics for Non-Statisticians: A Step-by-Step Approach Wiley, ISBN 9780470454619
  • Greenwood, P.E., Nikulin, M.S. (1996) A guide to chi-squared testing. Wiley, New York. ISBN 047155779X
  • Nikulin, M.S. (1973) Chi-square test for normality. "International Vilnius Conference on Probability Theory and Mathematical Statistics", v.2, 119–122.
  • Nikulin, M.S. (1973) Chi-square test for continuous distributions with scale and shift parameters, "Theory of Probability and its Applications", v.18, #3, 559–568

Enlaces externos


Este artículo ha sido escrito por Wikipedia. El texto está disponible bajo la licencia Creative Commons - Atribución - CompartirIgual. Pueden aplicarse cláusulas adicionales a los archivos multimedia.