Poliedro
Un poliedro es, en el sentido dado por la geometría clásica al término, un cuerpo geométrico cuyas caras son planas y encierran un volumen finito. La palabra poliedro viene del griego clásico πολύεδρον (polyedron), de la raíz πολύς (polys), «muchas» y de ἕδρα (hedra), «base», «asiento», «cara».






Los poliedros se conciben como cuerpos tridimensionales, pero hay semejantes topológicos del concepto en cualquier dimensión. Así, el punto o vértice es el semejante topológico del poliedro en cero dimensiones, una arista o segmento lo es en 1 dimensión, el polígono para 2 dimensiones; y el polícoro es el de cuatro dimensiones. Todas estas formas son conocidas como politopos, por lo que podemos definir un poliedro como un politopo tridimensional.

Definición
Existen varias definiciones de lo que es un poliedro, dependiendo de si se interpreta un poliedro como un volumen, como los polígonos que lo delimitan, o como únicamente los segmentos que forman el esqueleto del poliedro. Normalmente, un poliedro se define como una región acotada del espacio, delimitada completamente por superficies planas. Esta definición es generalmente tolerante a las autointersecciones.
El concepto de poliedro puede extenderse de manera que se puedan incluir otras clases de cuerpos, como las teselaciones, los apeiroedros, entre otros.
Denominación de los poliedros
Los poliedros son denominados de acuerdo a su número de caras. Su designación se basa en el griego clásico. Por ejemplo tetraedro (4-caras), pentaedro (5), hexaedro (6), heptaedro (7), ... icosaedro (20) - icosa es 20 en griego clásico -, etc.
Frecuentemente un poliedro se califica por una descripción del tipo de caras presentes en él. Si todas sus caras son iguales y además todos los ángulos poliedros son iguales, se les denomina poliedro regular. Por ejemplo, el dodecaedro regular o dodecaedro pentagonal frente al dodecaedro rómbico.
Otras denominaciones comunes indican que alguna operación se ha efectuado en un poliedro más simple que lo ha transformado en el actual. Por ejemplo el cubo truncado, que semeja un hexaedro (cubo) con sus esquinas truncadas o recortadas. Tiene por lo tanto 14 caras, y en este caso no es regular ya que de sus caras, seis tienen forma de octógono regular y ocho de triángulo equilátero.
Criterios de clasificación de los poliedros
Los poliedros pueden ser clasificados en muchos grupos según la familia de donde provienen o de las características que los diferencian; según sus características, se distinguen:
- Poliedros convexos, cuando contiene en su interior todos los segmentos que unen dos puntos también contenidos en el poliedro. En el caso de que dicho segmento se salga del cuerpo se dice que son poliedros cóncavos, como es el caso de los poliedros toroidales y los sólidos de Kepler-Poinsot.
- Poliedro de caras regulares, cuando todas las caras del poliedro son polígonos regulares.
- Poliedro transitivo de caras o isoedral, cuando cualquier par de caras es equivalente bajo las simetrías del poliedro.
- Poliedro transitivo de aristas o isotoxal, cuando cualquier par de aristas es equivalente bajo las simetrías del poliedro.
- Poliedro transitivo de vértices o isogonal, cuando cualquier par de vértices es equivalente bajo las simetrías del poliedro.
- Poliedro cuasiregular, cuando es transitivo de caras y transitivo de aristas, pero no es transitivo de vértices.
- Poliedro noble, cuando es transitivo de caras y transitivo de vértices.
- Poliedro uniforme, cuando es transitivo de vértices y caras regulares
- Poliedro regular, cuando es de caras regulares, transitivo de caras, transitivo de aristas y transitivo de vértices.
Estos grupos no se excluyen entre sí, es decir, un poliedro puede pertenecer a varias categorías.
Clasificación según el número de caras
El nombre que se le asigna a un poliedro según su número de caras se compone de un prefijo numeral más el sufijo ‑edro. La siguiente lista muestra varios ejemplos.
Nombre | Número de caras |
---|---|
henaedro o monoedro | 1 |
diedro | 2 |
triedro | 3 |
tetraedro | 4 |
pentaedro | 5 |
hexaedro | 6 |
heptaedro | 7 |
octaedro u octoedro | 8 |
eneaedro o nonaedro | 9 |
decaedro | 10 |
endecaedro o undecaedro | 11 |
dodecaedro | 12 |
tridecaedro | 13 |
tetradecaedro | 14 |
pentadecaedro | 15 |
hexadecaedro | 16 |
heptadecaedro | 17 |
octadecaedro u octodecaedro | 18 |
eneadecaedro o nonadecaedro | 19 |
icosaedro o isodecaedro | 20 |
triacontaedro o tricontaedro | 30 |
tetracontaedro | 40 |
pentacontaedro o pentecontaedro | 50 |
hectaedro o hecatontaedro | 100 |
chiliaedro | 1.000 |
miriaedro | 10.000 |
decamiriaedro | 100.000 |
hectamiriaedro o megaedro | 1.000.000 |
gigaedro | 1.000.000.000 |
yottaedro | 1024 |
googoledro | 10100 |
apeiroedro | infinitos |
n-edro[lower-alpha 1] | n |
- n puede ser cualquier cantidad escrita en letras o dígitos, o puede dejarse como variable para generalizar a cualquier cantidad de caras.
Reglas de nombramiento
El prefijo numeral que forma parte de estos nombres se puede dividir en otros prefijos más específicos, los cuales describen cada dígito del número de caras del poliedro, y en el mismo orden en que aparecen (excepto cuando hay un 1 en la posición de las decenas; caso en el que se intercambia de lugar el prefijo de las decenas con el de las unidades).
Los prefijos que describen cada dígito pueden a su vez estar compuestos por otros dos prefijos, donde el primero indica cuál es el dígito que describe (es decir, si es un 1, un 2, etc.) y el segundo cuál es la posición del dígito (decenas, centenas, etc.), aunque en algunos casos el dígito es descrito con solo un prefijo de estos:
- Las unidades se describen solamente con un prefijo de dígito
- Cuando el dígito es un 1 se describe únicamente con su prefijo de posición correspondiente
- icosa- puede colocarse en lugar de isodeca-
La siguiente tabla muestra los distintos prefijos de dígito y de posición. Dependiendo de la posición del dígito correspondiente, los prefijos que se usan varían.
Prefijo de dígito | Prefijo de posición | |||||
---|---|---|---|---|---|---|
Posición del dígito correspondiente | Dígito | Prefijo | Posición | |||
Cualquiera | Unidades | Decenas | Centenas | |||
en-, hena-, mono- o un-[lower-alpha 1] | 1 | conta- o deca-[lower-alpha 2] | 10 | |||
di- | do- | iso- | dia-[lower-alpha 3] | 2 | cosi-, hecatonta- o hecta-[lower-alpha 4] | 100 |
tri- | tria- | tria-[lower-alpha 5] | 3 | chilia- | 1.000 | |
tetra- | 4 | miria- | 10.000 | |||
penta- | pente- | 5 | decamiria- | 100.000 | ||
hexa- | hexe- | 6 | hectamiria- o mega- | 1.000.000 | ||
hepta- | 7 | decamega- | 10.000.000 | |||
octa- | octo- | 8 | hectamega- | 100.000.000 | ||
enea- o nona- | 9 | ...[lower-alpha 6] |
- en- o un- solo se usan cuando el número de caras acaba en 11. De lo contrario, se utiliza hena- o mono-.
- deca- solo se usa cuando el dígito correspondiente es un 1 o un 2. De lo contrario, se usa conta-.
- Cuando el nombre lleva el prefijo cosi- se usa dia- para las centenas en lugar de di-
- hecatonta- solo se usa si el dígito correspondiente es un 1. Solo de lo contario, se usa cosi-.
- Cuando el nombre lleva el prefijo cosi- se usa tria- para las centenas en lugar de tri-
- A partir del megaedro se utiliza el prefijo del SI correspondiente a la potencia de 1.000 menor más cercana a la posición del dígito, más uno de los prefijos, deca- o hecta-, si es que el dígito está una o dos posiciones más hacia la izquierda, respectivamente, que la potencia de 1.000 descrita por el prefijo del SI.
Familias de poliedros
Poliedros regulares
Un poliedro regular es aquel que tiene caras y vértices iguales, por ejemplo un cubo (también llamado hexaedro regular). El cubo posee seis polígonos regulares como caras, estos a su vez se unen en vértices, habiendo tres cuadrados en cada vértice. Existen cinco poliedros regulares convexos más 4 estelaciones, sumando 9 en total.
Sólidos platónicos
Los sólidos platónicos o sólidos de Platón son poliedros regulares y convexos. Solo existen cinco sólidos platónicos.
Nombre | Imagen | Símbolo de Schläfli | Configuración de vértices |
---|---|---|---|
Tetraedro | ![]() |
{3,3} | 3.3.3 |
Cubo o hexaedro regular | ![]() |
{4,3} | 4.4.4 |
Octaedro | ![]() |
{3,4} | 3.3.3.3 |
Dodecaedro | ![]() |
{5,3} | 5.5.5 |
Icosaedro | ![]() |
{3,5} | 3.3.3.3.3 |
Sólidos de Kepler-Poinsot
Los sólidos de Kepler-Poinsot o sólidos de Kepler son poliedros regulares, de tamaño finito, y a diferencia de los sólidos platónicos, no son convexos. Solo hay cuatro de ellos, y se obtienen como estelaciones del dodecaedro o del icosaedro.
Nombre | Imagen | Símbolo de Schläfli | Configuración de vértices |
---|---|---|---|
Gran dodecaedro | ![]() |
{5,5⁄2} | (55)/2 |
Pequeño dodecaedro estrellado | ![]() |
{5⁄2,5} | (5⁄2)5 |
Gran icosaedro | ![]() |
{3,5⁄2} | (35)/2 |
Gran dodecaedro estrellado | ![]() |
{5⁄2,3} | (5⁄2)3 |
Poliedros irregulares
Se dice que un poliedro irregular es aquel que tiene desigualdades entre sus caras, aristas o vértices.
Sólidos arquimedianos
Los sólidos arquimedianos o sólidos de Arquímedes son poliedros convexos y uniformes, pero no transitivos de caras. La familia infinita de los poliedros prismáticos no se considera como parte de los sólidos arquimedianos. Fueron ampliamente estudiados por Arquímedes. Algunos se obtienen truncando los sólidos platónicos. Solo hay trece sólidos arquimedianos.
Nombre | Imagen | Configuración de vértices |
---|---|---|
Tetraedro truncado | ![]() |
3.6.6 |
Cuboctaedro | ![]() |
3.4.3.4 |
Cubo truncado | ![]() |
3.8.8 |
Octaedro truncado | ![]() |
4.6.6 |
Rombicuboctaedro | ![]() |
3.4.4.4 |
Cuboctaedro truncado | ![]() |
4.6.8 |
Cubo romo | ![]() |
3.3.3.3.4 |
Icosidodecaedro | ![]() |
3.5.3.5 |
Dodecaedro truncado | ![]() |
3.10.10 |
Icosaedro truncado | ![]() |
5.6.6 |
Rombicosidodecaedro | ![]() |
3.4.5.4 |
Icosidodecaedro truncado | ![]() |
4.6.10 |
Dodecaedro romo | ![]() |
3.3.3.3.5 |
Prismas y antiprismas
El resto de poliedros convexos y uniformes consiste de prismas y antiprismas, los cuales en conjunto llevan el nombre de poliedros prismáticos. Estos fueron estudiados por Kepler, quien los clasificó. Las familias de los prismas y antiprismas son ambas infinitas.
Todos los prismas uniformes se construyen con dos caras paralelas llamadas bases, directrices o caras directrices, y una serie de cuadrados, tantos como lados tenga la cara directriz. Por ejemplo, el prisma cuyas caras directrices son triangulares se llama prisma triangular y se compone de dos triángulos y tres cuadrados; tiene seis vértices de orden 3 donde convergen siempre dos cuadrados y un triángulo.
Los antiprismas también contienen dos directrices, pero en este caso van unidas por triángulos isósceles, donde la base de cada triángulo va unida a una arista de una de las bases del antiprisma, y el vértice del mismo triángulo va unido a un vértice de la otra base.
Sólidos de Johnson
Los sólidos de Johnson son un grupo extenso que contiene al resto de los poliedros convexos de caras regulares. Solo uno de ellos tiene la misma configuración en todos sus vértices (pero no es transitivo de vértices) y fueron clasificados y ampliamente estudiados por Norman Johnson. Los sólidos de Johnson son en total 92.
Poliedros estrellados uniformes
Los poliedros estrellados uniformes son una familia de poliedros no convexos, isogonales y de caras regulares. Contiene dos familias infinitas, los prismas estrellados y los antiprismas estrellados, más otros 57 poliedros, 4 de los cuales son los sólidos de Kepler-Poinsot.
Sólidos de Catalan
Corresponden a los duales de los sólidos de Arquímedes (el dual es básicamente el reemplazo de las caras por vértices y viceversa, de manera que las uniones entre los vértices del dual coincidan con las uniones entre las caras del poliedro original). Por ejemplo, el dual del icosaedro (20 caras y 12 vértices) es el dodecaedro (12 caras y 20 vértices), y viceversa. Los sólidos de Catalan son isoedrales pero no de caras regulares.
Deltaedros
Se llama deltaedros a los cuerpos que solo están formados por triángulos equiláteros. Solo hay ocho deltaedros. Del grupo de los sólidos platónicos se encuentran el tetraedro, el octaedro y el icosaedro; y del grupo de los sólidos de Johnson están la bipirámide triangular, la bipirámide pentagonal, la bipirámide cuadrada giroelongada, el biesfenoide romo y el prisma triangular triaumentado.
Nombre | Imagen |
---|---|
Tetraedro | ![]() |
Octaedro | ![]() |
Icosaedro | ![]() |
Bipirámide triangular | ![]() |
Bipirámide pentagonal | ![]() |
Biesfenoide romo | ![]() |
Prisma triangular triaumentado | ![]() |
Bipirámide cuadrada giroelongada | ![]() |
Trapezoedros
Los trapezoedros son los duales de los antiprismas.
Generalizaciones de poliedros
Apeiroedros
Se puede incluir como poliedros a aquellos que tienen una cantidad infinita de caras, llamados apeiroedros, entre los que destacan algunas familias:
- Los teselados o teselaciones, las cuales son poliedros que llenan completamente el plano en el que se encuentran. Todos los ángulos diedros en una teselación son planos.
- Los poliedros oblicuos infinitos, los cuales tienen caras oblicuas o figuras de vértice oblicuas
Poliedros en el espacio no euclidiano
También se puede extender el concepto de poliedro hacia espacios no euclidianos:
- Un poliedro esférico es una teselación en la superficie de la esfera, donde las aristas corresponden a geodésicas
- También es posible teselar el plano hiperbólico
Referencias y notas
Véase también
Bibliografía
- Quince Salas, Ricardo. Propiedades elementales de los poliedros regulares. Santander: [s.n.], 1974. 17 p. Comunicación presentada a las Reuniones sobre Geometría aplicada a la Arquitectura y a la Ingeniería Civil.
- Quince Salas, Ricardo. Áreas y volúmenes de cuerpos geométricos. Teoría y ejercicios. Santander: Escuela Superior de Ingenieros de Caminos, Canales y Puertos, [s.a.]. 202 p.
- Quince Salas, Ricardo. Áreas y volúmenes de cuerpos geométricos. Tomo 2: soluciones. Santander: Escuela Superior de Ingenieros de Caminos, Canales y Puertos, [s.a.]. 124 p.
Enlaces externos
Wikimedia Commons alberga una galería multimedia sobre Poliedro.
En español
Teoría general
- Weisstein, Eric W. «Polyhedron». En Weisstein, Eric W, ed. MathWorld (en inglés). Wolfram Research.
- Polyhedra Pages (en inglés)
- Uniform Solution for Uniform Polyhedra by Dr. Zvi Har'El (en inglés)
- Symmetry, Crystals and Polyhedra (en inglés)
Listas y bases de datos de poliedros
- Virtual Reality Polyhedra – La Enciclopedia de poliedros.
- Electronic Geometry Models – Contiene una revisada selección de poliedros con característica inusuales.
- Polyhedron Models – Poliedros virtuales. (en inglés)
- Modelos de papel de varios poliedros
- Polyhedra Viewer – Visor basado en web para ver las relaciones entre varios poliedros.
Software libre
- A Plethora of Polyhedra (en inglés) – Una colección interactiva y gratuita de poliedros en Java. Incluye redes, secciones planares, duales, truncamientos y estrellamientos de más de 300 poliedros.
- Hyperspace Star Polytope Slicer (en inglés) – Una applet en java para Explorer, incluye una variedad de opciones de visores 3d.
- openSCAD – Programa libre en multiplataforma para programadores. Los poliedros son unas de las formas que se pueden modelas con ellos. Hay un manual (OpenSCAD User Manual).
- OpenVolumeMesh (en inglés) – Una biblioteca en C++ en multiplataforma para manejar redes poliédricas. Desarrollado por el Aachen Computer Graphics Group, RWTH Aachen University.
- Polyhedronisme – Una utilidad basada en web para generar modelos de poliedros que usa la Conway polyhedron notation. Los modelos se pueden exportar como imagen en 2D, o como 3D OBJ o ficheros VRML2. Los ficheros en 3D se pueden abrir con software CAD.
Recursos para hacer modelos físicos
- Paper Models of Polyhedra. Redes gratuitas de poliedros.
- Instrucciones sencillas para construir más de 30 poliedros de papel (en inglés)
- Polyhedra plaited with paper strips. Modelos de poliedros construidos sin usar pegamento.
- Adopt a Polyhedron (en inglés) - Vista interactiva, redes y datos para iompresoras 3D para todas los tipos de poliedros con hasta nueve vértices.