Teoría de colas

La teoría de colas es el estudio matemático de las colas o líneas de espera dentro de un sistema. Esta teoría estudia factores como el tiempo de espera medio en las colas o la capacidad de trabajo del sistema sin que llegue a colapsar. Dentro de las matemáticas, la teoría de colas se engloba en la investigación de operaciones y es un complemento muy importante a la teoría de sistemas y la teoría de control. Se trata así de una teoría que encuentra aplicación en una amplia variedad de situaciones como negocios, comercio, industria, ingenierías, transporte y logística o telecomunicaciones.

Diagrama que muestra dos colas y múltiples nodos servidores. La teoría de colas estudia los tiempos de espera y capacidad del sistema.

La teoría de colas permite modelar sistemas en los que existe una población de agentes (también llamados clientes o usuarios) que demandan cierto servicio que es proporcionado por uno o más servidores (también llamados recursos). Dado que puede haber más agentes que recursos, pueden registrarse esperas desde que un agente llega al sistema hasta que el servidor atiende su demanda, o incluso un agente puede ser rechazado del sistema al no haber espacio donde esperar (esto es, una cola). La teoría de colas sirve para modelar procesos tales como la llegada de datos a una cola en ciencias de la computación, la congestión en red de computadoras o de telecomunicación, o la implementación de una cadena productiva en la ingeniería industrial.

En el contexto de la informática o de las tecnologías de la información y la comunicación son paradigmáticas las situaciones de espera dentro de una red de comunicaciones. Así, por ejemplo, los procesos enviados a un servidor en red forman colas de espera mientras no son atendidos; la información solicitada a un servidor Web a través de Internet puede recibirse con demora debido a la congestión en la red o en el servidor; en el caso de telefonía (fija o móvil), una llamada puede no ser realizada si alguna central está saturada (un mensaje típico en este caso es "por sobrecarga en red rogamos vuelva a llamar pasados unos minutos").

Historia

El matemático danés Agner Krarup Erlang, trabajador de la Copenhagen Telephone Exchange, publicó el primer artículo sobre la teoría de colas en 1909.[1] Específicamente se preocupó del estudio del problema de dimensionamiento de líneas y centrales de conmutación telefónica para el servicio de llamadas. En su honor, la unidad de medida estadística del volumen de tráfico se denomina Erlang, así como un lenguaje de programación concurrente diseñado por Ericsson.

Cincuenta años más tarde, el científico estadounidense y pionero en el análisis de redes de ordenadores Leonard Kleinrock desarrolló el uso de herramientas de teoría de colas para en análisis de redes de conmutación de paquetes, con su tesis doctoral presentada en 1962 (y publicada en forma de libro en 1964).

Modelo de formación de colas

Se forman debido a un desequilibrio temporal entre la demanda del servicio y la capacidad del sistema para suministrarlo.

En las formaciones de colas se habla de clientes, tales como máquinas dañadas a la espera de ser rehabilitadas. Los clientes pueden esperar en cola debido a que los medios existentes sean inadecuados para satisfacer la demanda del servicio; en este caso, la cola tiende a ser explosiva, es decir, a ser cada vez más larga a medida que transcurre el tiempo. Los clientes puede que esperen temporalmente, aunque las instalaciones de servicio sean adecuadas, porque los clientes llegados anteriormente están siendo atendidos.

Objetivos

Los objetivos de la teoría de colas consisten en:

  • Identificar el nivel óptimo de capacidad del sistema que minimiza su coste.
  • Evaluar el impacto que las posibles alternativas de modificación de la capacidad del sistema tendrían en su coste total.
  • Establecer un balance equilibrado (“óptimo”) entre las consideraciones cuantitativas de costes y las cualitativas de servicio.
  • Prestar atención al tiempo de permanencia en el sistema o en la cola de espera.

Elementos existentes en la teoría de colas

  • Proceso básico de colas: Los clientes que requieren un servicio se generan en una fase de entrada. Estos clientes entran al sistema y se unen a una cola. En determinado momento se selecciona un miembro de la cola, para proporcionarle el servicio, mediante alguna regla conocida como disciplina de servicio. Luego, se lleva a cabo el servicio requerido por el cliente en un mecanismo de servicio, después de lo cual el cliente sale del sistema de colas.
    Figura 1.
  • Fuente de entrada o población potencial: Una característica de la fuente de entrada es su tamaño. El tamaño es el número total de clientes que pueden requerir servicio en determinado momento. Puede suponerse que el tamaño es infinito o finito.
  • Cliente: Es todo individuo de la población potencial que solicita servicio como por ejemplo una lista de trabajo esperando para imprimirse.
  • Capacidad de la cola: Es el máximo número de clientes que pueden estar haciendo cola (antes de comenzar a ser servidos). De nuevo, puede suponerse finita o infinita.
  • Disciplina de la cola: La disciplina de la cola se refiere al orden en el que se seleccionan sus miembros para recibir el servicio. Por ejemplo, puede ser:
    • FIFO (first in first out) primero en entrar, primero en salir, según la cual se atiende primero al cliente que antes haya llegado.
    • LIFO (last in first out) también conocida como pila que consiste en atender primero al cliente que ha llegado el último.
    • RSS (random selection of service) que selecciona los clientes de manera aleatoria, de acuerdo a algún procedimiento de prioridad o a algún otro orden.
    • Processor Sharing – sirve a los clientes igualmente. La capacidad de la red se comparte entre los clientes y todos experimentan con eficacia el mismo retraso.
  • Mecanismo de servicio: El mecanismo de servicio consiste en una o más instalaciones de servicio, cada una de ellas con uno o más canales paralelos de servicio, llamados servidores.
  • Redes de colas: Sistema donde existen varias colas y los trabajos fluyen de una a otra. Por ejemplo: las redes de comunicaciones o los sistemas operativos multitarea.
  • El proceso de servicio: Define cómo son atendidos los clientes.

Notación Kendall

David G. Kendall introdujo una notación de colas A/B/C en 1953. La notación de Kendall para describir las colas y sus características puede encontrarse en Tijms, H.C,Algorithmic Analysis of Queues, Capítulo 9 en A First Course in Stochastic Models, Wiley, Chichester, 2003. Ha sido desde entonces extendida a 1/2/3/(4/5/6) donde los números se reemplazan con:

  1. Un código que describe el proceso de llegada. Los códigos usados son:
    • M para "Markoviano" (la tasa de llegadas sigue una distribución de Poisson), significando una distribución exponencial para los tiempos entre llegadas.
    • D para unos tiempos entre llegadas deterministas, es decir, no siguen un proceso probabilista a la hora de su determinación.
    • G para una "distribución general" de los tiempos entre llegadas, o del régimen de llegadas.
  2. Un código similar que representa el proceso de servicio (tiempo de servicio). Se usan los mismos símbolos.
  3. El número de canales de servicio (o servidores).
  4. La capacidad del sistema, o el número máximo de clientes permitidos en el sistema incluyendo esos en servicio. Cuando el número está al máximo, las llegadas siguientes son rechazadas.
  5. El orden de prioridad en la que los trabajos en la cola son servidos:
    • First Come First Served (FCFS) o First In First Out (FIFO)
    • Last Come First Served (LCFS) o Last In First Out (LIFO)
    • Service In Random Order (SIRO)
    • Processor Sharing
  6. El tamaño del origen de las llamadas. El tamaño de la población desde donde los clientes vienen. Esto limita la tasa de llegadas.

Ejemplos

  • M/M/1/ (/FIFO/): Se trata de una de las colas más sencillas. Las llegadas siguen un proceso de Poisson, las peticiones tienen un tiempo de servicio que sigue una variable aleatoria exponencial y únicamente hay un servidor. No se suelen especificar los parámetros 4, 5 y 6, lo que supone los siguientes valores por defecto: la capacidad del sistema es infinita, la prioridad es FIFO, y la población que genera las peticiones es infinita (lo que implica que la tasa de llegadas es constante).
  • M/M/n/n: No hay cola de espera, sino n recursos (servidores) y hasta n usuarios como máximo; si llega el usuario n+1, es rechazado. Este modelo suele aplicarse para analizar las prestaciones en telefonía convencional. La probabilidad de que un usuario sea rechazado se calcula con la fórmula Erlang-B.
  • M/M/c: La capacidad del sistema es ilimitada, aunque haya sólo n recursos; en caso de llegar el usuario n+1, éste no será rechazado sino que pasará a una cola de espera. Este modelo puede aplicarse para analizar un call center en el que un número fijo de operadores resuelven peticiones, que pueden quedar en espera hasta ser atendidas. La probabilidad de que un usuario no sea atendido directamente sino que tenga que esperar se calcula con la fórmula Erlang-C.

Estructuras típicas

Figura 2.

El primer sistema que se muestra en la figura, se llama un sistema de un servidor y una cola. El segundo, una línea con múltiples servidores. El tercer sistema, aquel en que cada servidor tiene una línea de separación. El cuarto sistema, es una línea con servidores en serie. Este modelo puede aplicarse a trabajos ordenador que esperan tiempo de procesador.

Medidas de desempeño de estado estable

En teoría de colas se utilizan comúnmente las siguientes medidas de desempeño, estas se calculan de forma diferente según el modelo de la línea de espera:

Ls = Cantidad esperada de clientes en un sistema

Lq = Cantidad esperada de clientes en una cola

Ws = Tiempo de espera en el sistema

Wq = Tiempo de espera anticipado en la cola

ρ = Factor de utilización del sistema

Modelos

M/M/1

En este modelo, según la notación de Kendall, la tasa de llegadas y la tasa de servicio siguen una distribución de Poisson. Y hay un solo servidor. Las medidas de desempeño de estado estable se calculan de la siguiente forma:

Donde λ es la tasa promedio de arribos al sistema y μ la tasa promedio de servicio.

Cabe resaltar que si λ ≥ μ el sistema es explosivo, además, Wq nunca será mayor que Ws.[2]

M/M/s

Este modelo supone que existen en el sistema s (entero positivo) servidores, en este caso las medidas de desempeño se calcularán así:[3]


Las limitaciones del acercamiento matemático

La teoría de formación de una cola es a menudo demasiado restrictiva matemáticamente para ser capaz de modelar todas las situaciones verdaderas a nivel mundial. Por ejemplo; los modelos matemáticos a menudo asumen el número de clientes, o la capacidad de la cola infinitos, cuando es evidente que deben estar limitados. Los medios alternativos del análisis de la teoría de colas consisten generalmente en simulaciones de ordenador o en el análisis de datos experimentales.

Aplicación a la telefonía

Las redes telefónicas se diseñan para acomodar la intensidad ofrecida del tráfico con solamente una pequeña pérdida. El funcionamiento de los sistemas depende de si la llamada es rechazada, de si está perdida, etc. Normalmente los sistemas de desbordamiento hacen uso de rutas alternativas e incluso estos sistemas tienen una capacidad de carga finita o máxima de tráfico. Sin embargo, el uso de las colas permite que los sistemas esperen por las peticiones de su cliente hasta que los recursos libres estén disponibles. Esto significa que si los niveles de la intensidad del tráfico exceden de la capacidad disponible, las llamadas del cliente se perderían. La disciplina de colas determina la manera de cómo manejar las llamadas de los clientes. Define la manera en que les servirán, la orden de las cuales se sirven, y la manera en la que los recursos se dividen entre los clientes.

Modelos de colas con distribuciones no exponenciales

En particular, el supuesto de tiempos entre llegadas exponenciales implica que las llegadas ocurren al azar (proceso de entrada de Poisson), lo cual es una aproximación razonable en muchas situaciones pero no cuando las llegadas están programadas o reguladas con todo cuidado. Todavía más, las distribuciones de tiempos de servicio reales con frecuencia se desvían bastante de la forma exponencial, en particular cuando los requerimientos de servicio de los clientes son muy parecidos. Por ello, es importante disponer de otros modelos de colas que usen otras distribuciones de probabilidad. Desafortunadamente, el análisis matemático de los modelos de colas con distribuciones no exponenciales es mucho más difícil. Sin embargo, se han podido obtener algunos resultados útiles con algunos modelos.[4]

Véase también

Referencias

  1. http://pass.maths.org.uk/issue2/erlang/index.html
  2. Taha, Investigación de operaciones (2012). «18». Medidas de desempeño de estado estable (Novena edición). PEARSON EDUCACIÓN. p. 612. ISBN 978-607-32-0796-6.
  3. Lieberman, INTRODUCCIÓN A LA INVESTIGACIÓN DE OPERACIONES (2010). «17». TEORÍA DE COLAS (Novena edición). McGRAW-HILL/INTERAMERICANA EDITORES, S.A. DE C.V. p. 725. ISBN 978-607-15-0308-4.
  4. Lieberman, INTRODUCCIÓN A LA INVESTIGACIÓN DE OPERACIONES (2010). «17». TEORÍA DE COLAS (Novena edición). McGRAW-HILL/INTERAMERICANA EDITORES, S.A. DE C.V. p. 737. ISBN 978-607-15-0308-4.

Bibliografía

Enlaces externos

Este artículo ha sido escrito por Wikipedia. El texto está disponible bajo la licencia Creative Commons - Atribución - CompartirIgual. Pueden aplicarse cláusulas adicionales a los archivos multimedia.