Ciencias formales
Las ciencias formales son un conjunto de ciencias que estudian los lenguajes formales y los sistemas formales. Si bien su objeto de estudio no es el mundo físico o natural, sino objetos abstractos, sus conocimientos pueden ser más o menos aplicados a dicha realidad físico-natural. El método propio de las ciencias formales es la deducción; y a diferencia de las ciencias fácticas, no admite la inducción ni la abducción.[1] Es aquella que trabaja con formas, es decir, con objetos ideales que existen en la mente y son obtenidos por abstracción. La verdad en las ciencias formales es entendida como verdad lógica: consecuencias que siguen necesariamente de considerar todas las posibilidades o «formas» en las que podrían combinarse los hechos preestablecidos.
Ejemplos de ciencias formales son las matemáticas, la lógica y las ciencias de la computación.
Las ciencias formales son las ramas de la ciencia que estudian sistemas formales. Las ciencias formales validan sus teorías con base en proposiciones, definiciones, axiomas y reglas de inferencia. Todas ellas son analíticas y por regla general se asumen exactas o perfectas, a diferencia de las ciencias sociales y las ciencias naturales, que se argumentan de manera empírica o con métodos experimentales; es decir, observando el mundo real para encontrar más o menos evidencia a favor de una hipótesis. Los conocimientos de la ciencia formal suelen llamarse «teoremas», que a su vez provienen de demostraciones matemáticas.
Ejemplos
Matemática
.png.webp)

La matemática[3] (del latín mathematĭca, y este del griego μαθηματικά, transliterado como mathēmatiká, derivado de μάθημα, tr. máthēma. 'conocimiento') es una ciencia formal que, partiendo de axiomas y siguiendo el razonamiento lógico, estudia las propiedades, estructuras abstractas y relaciones entre entidades abstractas como números, figuras geométricas, iconos, glifos o símbolos en general.[cita requerida]
La matemática es un conjunto de lenguajes formales que pueden usarse como herramienta para plantear problemas en contextos específicos. Por ejemplo, el siguiente enunciado puede expresarse de dos formas: X es mayor que Y y Y es mayor que Z, o en forma simplificada puede decirse que X > Y > Z. Este es el motivo por el cual las matemáticas son tan solo un lenguaje simplificado con una herramienta para cada problema específico (por ejemplo, 2 × 2 = 4 o bien 2 + 2 = 4).[cita requerida]
Las ciencias naturales han hecho un uso extensivo de la matemática para explicar diversos fenómenos observables, tal como lo expresó Eugene Paul Wigner (Premio Nobel de Física en 1963):[4]
La enorme utilidad de la matemática en las ciencias naturales es algo que roza lo misterioso, y no hay explicación para ello. No es en absoluto natural que existan «leyes de la naturaleza», y mucho menos que el hombre sea capaz de descubrirlas. El milagro de lo apropiado que resulta el lenguaje de las matemáticas para la formulación de las leyes de la física es un regalo maravilloso que no comprendemos ni nos merecemos.
Galileo Galilei, en la misma línea, lo había expresado así: «La matemática es el lenguaje en el que Dios escribió el universo.»
Mediante la abstracción y el uso de la lógica en el razonamiento, la matemática ha evolucionado basándose en el cálculo y las mediciones, junto con el estudio sistemático de la forma y el movimiento de los objetos físicos. Las matemáticas, desde sus comienzos, han tenido un fin práctico.
Las explicaciones que se apoyaban en la lógica aparecieron por primera vez con la matemática helénica, especialmente con los Elementos de Euclides. La matemática siguió desarrollándose, con continuas interrupciones, hasta que en el Renacimiento las innovaciones matemáticas interactuaron con los nuevos descubrimientos científicos. Como consecuencia, hubo una aceleración en la investigación que continúa hasta la actualidad.
Hoy día, la matemática se usa en todo el mundo como una herramienta esencial en muchos campos, entre los que se encuentran las ciencias naturales, la ciencias aplicadas, las humanidades, la medicina y las ciencias sociales, e incluso disciplinas que, aparentemente, no están vinculadas con ella, como la música (por ejemplo, en cuestiones de resonancia armónica). Las matemáticas aplicadas, rama de la matemática destinada a la aplicación del conocimiento matemático a otros ámbitos, inspiran y hacen uso de los nuevos descubrimientos matemáticos y, en ocasiones, conducen al desarrollo de nuevas disciplinas. Los matemáticos también participan en la matemática pura, sin tener en cuenta la aplicación de esta ciencia, aunque las aplicaciones prácticas de la matemática pura suele ser descubiertas con el paso del tiempo.Lógica

La lógica es una rama de la filosofía[5] de carácter interdisciplinario, entendida como la ciencia formal que estudia los principios de la demostración y la inferencia válida,[6] las falacias, las paradojas y la noción de verdad.[7]
La lógica se divide en varias categorías según su campo de estudio. La lógica filosófica estudia el concepto y la definición, la enunciación o proposición y la argumentación utilizando los métodos y resultados de la lógica moderna para el estudio de problemas filosóficos. La lógica matemática estudia la inferencia mediante sistemas formales como la lógica proposicional, la lógica de primer orden y la lógica modal. La lógica informal se enfoca en el desarrollo lingüístico de los razonamientos y sus falacias. La lógica computacional es la aplicación de la lógica matemática a las ciencias de la computación.
Los orígenes de la lógica se remontan a la Edad Antigua, con brotes independientes en China, India y Grecia. Desde entonces, la lógica tradicionalmente se considera una rama de la filosofía, pero en el siglo XX la lógica ha pasado a ser principalmente la lógica matemática, y por lo tanto ahora también se considera parte de las matemáticas, e incluso una ciencia formal independiente.
No existe un acuerdo universal sobre la definición exacta o los límites de la lógica.[8][9][10] Sin embargo, el ámbito de la lógica (interpretada en sentido amplio) incluye:
- La clasificación de los argumentos.
- El análisis sistemático de las formas lógicas.
- El estudio sistemático de la validez de las inferencias deductivas.
- La fuerza de las inferencias inductivas.
- El estudio de los argumentos defectuosos, como las falacias.
- El estudio de las paradojas lógicas.
- El estudio de la sintaxis y la semántica de los lenguajes formales.
- El estudio de los conceptos de sentido, denotación y verdad.
Ciencias de la computación
Las ciencias de la computación o ciencias de la informática son las ciencias formales que abarcan las bases teóricas de la información y la computación, así como su aplicación en sistemas computacionales.[11][12][13] El cuerpo de conocimiento de las ciencias de la computación es frecuentemente descrito como el estudio sistemático de los procesos algorítmicos que describen y transforman información: su teoría, análisis, diseño, eficiencia, implementación, algoritmos sistematizados y aplicación.[14] En términos más específicos se trata del estudio sistemático de la factibilidad, estructura, expresión y mecanización de procedimientos metódicos (o algoritmos) que subyacen en la adquisición, representación, procesamiento, almacenamiento, comunicación y acceso a la información. La información puede estar codificada en forma de bits en una memoria de computadora, o en algún otro objeto, como los genes y proteínas en una célula biológica.[15]
Existen diversas ramas o disciplinas dentro de las ciencias de la computación; algunos resaltan los resultados específicos del cómputo (como los gráficos por computadora), mientras que otros (como la teoría de la complejidad computacional) se relacionan con propiedades de los algoritmos usados al realizar cómputo; y otros se enfocan en los problemas que requieren la implementación de sistemas computacionales. Por ejemplo, los estudios de la teoría de lenguajes de programación describen un cómputo, mientras que la programación de computadoras aplica lenguajes de programación específicos para desarrollar una solución a un problema computacional específico. Un computólogo se especializa en teoría de la computación y en el diseño e implementación de sistemas computacionales.[16]
Según Peter J. Denning, la cuestión fundamental en que se basa la ciencia de la computación es: «¿Qué puede ser (eficientemente) automatizado?».[17]Véase también
Referencias
- Concepto de ciencias formales en DeConceptos.
- Ninguna semejanza o descripción de la apariencia física de Euclides durante su vida sobrevivió a la antigüedad. Por lo tanto, la representación de Euclides en las obras de arte depende de la imaginación del artista (véase Euclides).
- «matemática», Diccionario de la lengua española (avance de la vigésima tercera edición). Consultado el 20 de enero de 2013.
Utilízase más en plural con el mismo significado que en singular.
- Libro "Del átomo a la mente", 2002, de Ignacio Martínez y Juan Luis Arsuaga. Capítulo 1 "La carta de Dios", subtítulo "El Libro de la Naturaleza", aproximadamente en el sitio 5.5% del libro.
- «Lógica (evolución histórica) - Filosofía.org».
- Simon Blackburn (ed.). «logic». The Oxford Dictionary of Philosophy (en inglés) (2008 Edition). Oxford University Press. «lógica: La ciencia general de la inferencia. »
- Corazón González, Rafael. Saber, entender... vivir: una aproximación a la filosofía. pp. 74-77.
- Quine, Willard Van Orman (1986). Philosophy of Logic (2nd edición). Cambridge, MA.: Harvard University Press. pp. 1-14, 61-75. ISBN 0674665635. JSTOR j.ctvk12scx. OCLC 12664089.
- McGinn, Colin (2000). Logical Properties: Identity, Existence, Predication, Necessity, Truth. Oxford: Clarendon Press. ISBN 9780199241811. OCLC 44502365. doi:10.1093/0199241813.001.0001.
- McKeon, Matthew (2003). «Colin McGinn. Logical properties: identity, existence, predication, necessity, truth. Clarendon Press, Oxford 2000, vi + 114 pp.». Bulletin of Symbolic Logic (en inglés) 9 (1): 39-42. ISSN 1079-8986. doi:10.1017/S107989860000473X.
- "Computer science is the study of information" Department of Computer and Information Science, Guttenberg Information Technologies
- "Computer science is the study of computation." Computer Science Department, College of Saint Benedict Archivado el 3 de febrero de 2007 en Wayback Machine., Saint John's University
- "Computer Science is the study of all aspects of computer systems, from the theoretical foundations to the very practical aspects of managing large software projects." Massey University
- Anthony Ralston, Edwin D. Reilly, David Hemmendinger (2000). Encyclopedia of Computer Science. Wiley. 978-0-470-86412-8.
- http://www.cs.bu.edu/AboutCS/WhatIsCS.pdf Archivado el 18 de febrero de 2015 en Wayback Machine..
- «WordNet Search - 3.1». Wordnetweb.princeton.edu. Consultado el 14 de mayo de 2012.
- Denning, P.J. (2000). «Computer Science: The Discipline» (PDF). Encyclopedia of Computer Science. Archivado desde el original el 25 de mayo de 2006.