Poliedro

Un poliedro es, en el sentido dado por la geometría clásica al término, un cuerpo geométrico cuyas caras son planas y encierran un volumen finito. La palabra poliedro viene del griego antiguo πολύεδρον (polyedron), de la raíz πολύς (polys), «muchas» y de ἕδρα (hedra), «base», «asiento», «cara».

Ejemplos de poliedros
Triacontaedro rómbico, de la familia de los sólidos de Catalan y poliedro dual del icosidodecaedro.
Trapezoedro octogonal
Dodecadodecaedro, de los poliedros uniformes estrellados.

Los poliedros se conciben como cuerpos tridimensionales, pero hay semejantes topológicos del concepto en cualquier dimensión. Así, el punto o vértice es el semejante topológico del poliedro en cero dimensiones, una arista o segmento lo es en 1 dimensión, el polígono para 2 dimensiones; y el polícoro es el de cuatro dimensiones. Todas estas formas son conocidas como politopos, por lo que podemos definir un poliedro como un politopo tridimensional.

Poliedros en un display en el museo Universum en la Ciudad de México

Definición

Existen varias definiciones de lo que es un poliedro, dependiendo de si se interpreta un poliedro como un volumen, como los polígonos que lo delimitan, o como únicamente los segmentos que conforman el esqueleto del poliedro. Normalmente, un poliedro se define como una región acotada del espacio, delimitada completamente por polígonos planos no necesariamente simples.

El concepto de poliedro puede extenderse de manera que incluya otras clases de cuerpos, como teselaciones, apeiroedros, entre otros.

Denominación de los poliedros

El nombre dado a un poliedro depende de las propiedades del poliedro que sean relevantes en el contexto en que se esté mencionando.

Normalmente el nombre incluye:

  • alguna cualidad acerca de las caras del poliedro, ya sea la cantidad (tetraedro (4), pentaedro (5), etc.), su forma (deltaedro (triangular), romboedro (rómbica), etc.), entre otras cualidades
  • propiedades que posea el poliedro (regular, toroidal, rómbico, etc.)
  • transformaciones que han sido hechas en el poliedro (truncado, romo, estrellado, etc.)

Criterios de clasificación de los poliedros

Los poliedros pueden clasificarse según varios criterios:

  • Los poliedros convexos contienen en su interior todos los segmentos que unen dos puntos también contenidos en el poliedro. En el caso de que dicho segmento se salga del cuerpo se dice que son poliedros cóncavos, como es el caso de los poliedros toroidales y los sólidos de Kepler-Poinsot.
  • Los poliedros de caras regulares tienen solo polígonos regulares como caras.
  • Los poliedros isoedrales o transitivos de caras poseen bajo las simetrías del poliedro una equivalencia entre cualquier par de caras.
  • Los poliedros isotoxales o transitivos de aristas poseen bajo las simetrías del poliedro una equivalencia entre cualquier par de aristas.
  • Los poliedros isogonales o transitivos de vértices poseen bajo las simetrías del poliedro una equivalencia entre cualquier par de vértices.

Estos en conjunto definen algunas de las principales familias de poliedros:

Convexos De caras regulares Isoedrales Isotoxales Isogonales Familia[1]
Si Si No No No Sólidos de Johnson
No nec.[2] Si No Si Si Poliedros cuasirregulares
No nec. Si No nec. No nec. Si Poliedros uniformes
No nec. No nec. Si No nec. Si Poliedros nobles
No nec. Si Si Si Si Poliedros regulares
No Si Si Si Si Sólidos de Kepler-Poinsot
Si Si Si Si Si Sólidos platónicos

Clasificación según el número de caras

El nombre que se le asigna a un poliedro según su número de caras se compone de un prefijo numeral más el sufijo edro. La siguiente lista muestra varios ejemplos:

NombreNúmero de caras
henaedro o monoedro1
diedro2
triedro3
tetraedro4
pentaedro5
hexaedro6
heptaedro7
octaedro u octoedro8
eneaedro o nonaedro9
decaedro10
endecaedro o undecaedro11
dodecaedro12
tridecaedro13
tetradecaedro14
pentadecaedro15
hexadecaedro16
heptadecaedro17
octadecaedro u octodecaedro18
eneadecaedro o nonadecaedro19
icosaedro o isodecaedro20
triacontaedro o tricontaedro30
tetracontaedro40
pentacontaedro o pentecontaedro50
hectaedro o hecatontaedro100
chiliaedro1.000
miriaedro10.000
decamiriaedro100.000
hectamiriaedro o megaedro1.000.000
gigaedro1.000.000.000
quettaedro1030
googoledro10100
apeiroedroinfinitos
n-edro[lower-alpha 1]n
  1. n puede ser cualquier cantidad escrita por su nombre o en dígitos, o puede dejarse como variable para generalizar a cualquier cantidad de caras.

Reglas de nombramiento

El prefijo numeral que forma parte de estos nombres se puede dividir en otros prefijos más específicos, los cuales describen cada dígito del número de caras del poliedro, y en el mismo orden en que aparecen (excepto cuando hay un 1 en la posición de las decenas; caso en el que se intercambia de lugar el prefijo de las decenas con el de las unidades).

Los prefijos que describen cada dígito pueden a su vez estar compuestos por otros dos prefijos, donde el primero indica cuál es el dígito que describe (es decir, si es 1, 2, etc.) y el segundo cuál es la posición del dígito (decenas, centenas, etc.), aunque en algunos casos el dígito es descrito con solo un prefijo de estos:

  • Las unidades se describen solamente con un prefijo de dígito
  • Cuando el dígito es un 1 se describe únicamente con su prefijo de posición correspondiente
  • icosa- puede colocarse en lugar de isodeca-

La siguiente tabla muestra los distintos prefijos de dígito y de posición. Dependiendo de la posición del dígito correspondiente, los prefijos que se usan varían.

Prefijo de dígitoPrefijo de posición
DígitoPosición del dígito correspondientePosiciónPrefijo
CualquieraUnidadesDecenasCentenas
1en-, hena-, mono- o un-[lower-alpha 1]10conta- o deca-[lower-alpha 2]
2di-[lower-alpha 3]do-[lower-alpha 4]iso-dia-[lower-alpha 5]100cosi-, hecatonta- o hecta-[lower-alpha 6]
3tri-tria-tria-[lower-alpha 7]1.000chilia-
4tetra-10.000miria-
5penta-pente-100.000decamiria-
6hexa-hexe-1.000.000hectamiria- o mega-
7hepta-10.000.000decamega-
8octa-octo-100.000.000hectamega-
9enea- o nona-...[lower-alpha 8]
  1. mono- solo se usa si el dígito de las decenas corresponde a 0, y en- o un- solo se usan si el dígito de las decenas es 1
  2. deca- solo se usa si el dígito de las decenas es 1 o 2, y solo en caso contrario se usa conta-
  3. di- no se usa en las unidades si el dígito de las decenas es 1 y no se usa en las decenas si el nombre contiene el prefijo deca-
  4. do- solo se usa si el dígito de las decenas es 1
  5. Solo se usa dia- en las centenas si el nombre contiene el prefijo cosi-
  6. hecatonta- solo se usa si el dígito correspondiente es 1. Solo de lo contario se usa cosi-.
  7. Solo se usa tria- en las centenas si el nombre contiene el prefijo cosi-
  8. A partir del megaedro se utiliza el prefijo del SI correspondiente a la potencia de 1.000 menor más cercana a la posición del dígito, más uno de los prefijos, deca- o hecta-, si es que el dígito está una o dos posiciones más hacia la izquierda, respectivamente, que la potencia de 1.000 correspondiente al prefijo del SI.

Familias de poliedros

Poliedros regulares

Un poliedro regular es isoedral, isotoxal, isogonal, y todas sus caras son regulares. En total existen cinco poliedros regulares convexos, que corresponden a los sólidos platónicos; más 4 no convexos, que corresponden a los sólidos de Kepler-Poinsot y son estelaciones de sólidos platónicos; sumando 9 en total.

Sólidos platónicos

Los sólidos platónicos o sólidos de Platón son poliedros regulares y convexos. Solo existen cinco sólidos platónicos.

NombreImagenSímbolo de SchläfliConfiguración de vértices
Tetraedro Tetraedro {3,3} 3.3.3
Cubo o hexaedro regular Cubo {4,3} 4.4.4
Octaedro Octaedro {3,4} 3.3.3.3
Dodecaedro Dodecaedro {5,3} 5.5.5
Icosaedro Icosaedro {3,5} 3.3.3.3.3

Sólidos de Kepler-Poinsot

Los sólidos de Kepler-Poinsot o sólidos de Kepler son poliedros regulares y que, a diferencia de los sólidos platónicos, no son convexos. Solo hay cuatro de ellos y se obtienen como estelaciones del dodecaedro o del icosaedro.

NombreImagenSímbolo de SchläfliConfiguración de vértices
Gran dodecaedro Gran dodecaedro {5,52} (55)/2
Pequeño dodecaedro estrellado Pequeño dodecaedro estrellado {52,5} (52)5
Gran icosaedro Gran icosaedro {3,52} (35)/2
Gran dodecaedro estrellado Gran dodecaedro estrellado {52,3} (52)3

Poliedros irregulares

Se dice que un poliedro es irregular si tiene desigualdades entre sus caras, aristas o vértices.

Sólidos arquimedianos

Los sólidos arquimedianos o sólidos de Arquímedes son poliedros convexos y uniformes, pero no transitivos de caras. La familia infinita de los poliedros prismáticos no se considera como parte de los sólidos arquimedianos. Fueron ampliamente estudiados por Arquímedes. Algunos se obtienen truncando los sólidos platónicos. Solo hay trece sólidos arquimedianos.

NombreImagenConfiguración de vértices
Tetraedro truncado Tetraedro truncado 3.6.6
Cuboctaedro Cuboctaedro 3.4.3.4
Cubo truncado Cubo truncado 3.8.8
Octaedro truncado Octaedro truncado 4.6.6
Rombicuboctaedro Rombicuboctaedro 3.4.4.4
Cuboctaedro truncado Cuboctaedro truncado 4.6.8
Cubo romo Cubo romo 3.3.3.3.4
Icosidodecaedro Icosidodecaedro 3.5.3.5
Dodecaedro truncado Dodecaedro truncado 3.10.10
Icosaedro truncado Icosaedro truncado 5.6.6
Rombicosidodecaedro Rombicosidodecaedro 3.4.5.4
Icosidodecaedro truncado Icosidodecaedro truncado 4.6.10
Dodecaedro romo Dodecaedro romo 3.3.3.3.5

Prismas y antiprismas

El resto de poliedros convexos y uniformes consiste de prismas y antiprismas, los cuales en conjunto llevan el nombre de poliedros prismáticos. Estos fueron estudiados por Kepler, quien los clasificó. Las familias de los prismas y antiprismas son ambas infinitas.

Todos los prismas uniformes se construyen con dos caras paralelas llamadas bases, directrices o caras directrices, y una serie de cuadrados, tantos como lados tenga la cara directriz. Por ejemplo, el prisma cuyas caras directrices son triangulares se llama prisma triangular y se compone de dos triángulos y tres cuadrados; tiene seis vértices de orden 3 donde convergen siempre dos cuadrados y un triángulo.

Los antiprismas también contienen dos directrices, pero en este caso van unidas por triángulos isósceles, donde la base de cada triángulo va unida a una arista de una de las bases del antiprisma, y el vértice del mismo triángulo va unido a un vértice de la otra base.

Sólidos de Johnson

Los sólidos de Johnson son un grupo extenso que contiene al resto de los poliedros convexos de caras regulares. Solo uno de ellos tiene la misma configuración en todos sus vértices (pero no es transitivo de vértices) y fueron clasificados y ampliamente estudiados por Norman Johnson. Los sólidos de Johnson son en total 92.

Poliedros estrellados uniformes

Los poliedros estrellados uniformes son una familia de poliedros no convexos, isogonales y de caras regulares. Contiene dos familias infinitas, los prismas estrellados y los antiprismas estrellados, más otros 57 poliedros, 4 de los cuales son los sólidos de Kepler-Poinsot.

Sólidos de Catalan

Corresponden a los duales de los sólidos de Arquímedes (el dual es básicamente el reemplazo de las caras por vértices y viceversa, de manera que las uniones entre los vértices del dual coincidan con las uniones entre las caras del poliedro original). Por ejemplo, el dual del icosaedro (20 caras y 12 vértices) es el dodecaedro (12 caras y 20 vértices), y viceversa. Los sólidos de Catalan son isoedrales pero no de caras regulares.

NombreImagen
Tetraedro triakis Triaquistetraedro
Dodecaedro rómbico Dodecaedro rómbico
Triaquisoctaedro Triaquisoctaedro
Tetraquishexaedro Tetraquishexaedro
Icositetraedro deltoidal Icositetraedro deltoidal
Disdiaquisdodecaedro Disdiaquisdodecaedro
Icositetraedro pentagonal Icositetraedro pentagonal
Triacontaedro rómbico Triacontaedro rómbico
Triaquisicosaedro Triaquisicosaedro
Pentaquisdodecaedro Pentaquisdodecaedro
Hexecontaedro deltoidal Hexecontaedro deltoidal
Disdiaquistriacontaedro Disdiaquistriacontaedro
Hexecontaedro pentagonal Hexecontaedro pentagonal

Deltaedros

Se llama deltaedros a los cuerpos que solo están formados por triángulos equiláteros. Solo hay ocho deltaedros convexos. Del grupo de los sólidos platónicos se encuentran el tetraedro, el octaedro y el icosaedro; y del grupo de los sólidos de Johnson están la bipirámide triangular, la bipirámide pentagonal, la bipirámide cuadrada giroelongada, el biesfenoide romo y el prisma triangular triaumentado.

NombreImagen
Tetraedro Tetraedro
Octaedro Octaedro
Icosaedro Icosaedro
Bipirámide triangular Bipirámide triangular
Bipirámide pentagonal Bipirámide pentagonal
Biesfenoide romo Biesfenoide romo
Prisma triangular triaumentado Prisma triangular triaumentado
Bipirámide cuadrada giroelongada Bipirámide cuadrada giroelongada

Trapezoedros

Los trapezoedros son los duales de los antiprismas.

Generalizaciones de poliedros

Apeiroedros

Se puede incluir como poliedros a aquellos que tienen una cantidad infinita de caras, llamados apeiroedros, entre los que destacan algunas familias:

  • Los teselados o teselaciones, las cuales son poliedros que llenan completamente el plano en el que se encuentran. Todos los ángulos diedros en una teselación son planos.
  • Los poliedros oblicuos infinitos, los cuales tienen caras oblicuas o figuras de vértice oblicuas

Poliedros en el espacio no euclidiano

También se puede extender el concepto de poliedro hacia espacios no euclidianos:

  • Un poliedro esférico es una teselación en la superficie de la esfera, donde las aristas corresponden a geodésicas
  • También es posible teselar el plano hiperbólico

Referencias y notas

  1. La familia contiene a todos y únicamente los poliedros que cumplen con las propiedades señaladas
  2. No necesariamente. Esto significa que existen casos en que se da la propiedad y casos en que no.

Véase también

Bibliografía

  • Quince Salas, Ricardo. Propiedades elementales de los poliedros regulares. Santander: [s.n.], 1974. 17 p. Comunicación presentada a las Reuniones sobre Geometría aplicada a la Arquitectura y a la Ingeniería Civil.
  • Quince Salas, Ricardo. Áreas y volúmenes de cuerpos geométricos. Teoría y ejercicios. Santander: Escuela Superior de Ingenieros de Caminos, Canales y Puertos, [s.a.]. 202 p.
  • Quince Salas, Ricardo. Áreas y volúmenes de cuerpos geométricos. Tomo 2: soluciones. Santander: Escuela Superior de Ingenieros de Caminos, Canales y Puertos, [s.a.]. 124 p.

Enlaces externos

  • Wikimedia Commons alberga una galería multimedia sobre Poliedro.

En español

Teoría general

Listas y bases de datos de poliedros

Software libre

  • A Plethora of Polyhedra (en inglés) – Una colección interactiva y gratuita de poliedros en Java. Incluye redes, secciones planares, duales, truncamientos y estrellamientos de más de 300 poliedros.
  • Hyperspace Star Polytope Slicer (en inglés) – Una applet en java para Explorer, incluye una variedad de opciones de visores 3d.
  • openSCAD – Programa libre en multiplataforma para programadores. Los poliedros son unas de las formas que se pueden modelas con ellos. Hay un manual (OpenSCAD User Manual).
  • OpenVolumeMesh (en inglés) – Una biblioteca en C++ en multiplataforma para manejar redes poliédricas. Desarrollado por el Aachen Computer Graphics Group, RWTH Aachen University.
  • Polyhedronisme Archivado el 25 de abril de 2012 en Wayback Machine. – Una utilidad basada en web para generar modelos de poliedros que usa la Conway polyhedron notation. Los modelos se pueden exportar como imagen en 2D, o como 3D OBJ o ficheros VRML2. Los ficheros en 3D se pueden abrir con software CAD.

Recursos para hacer modelos físicos

Este artículo ha sido escrito por Wikipedia. El texto está disponible bajo la licencia Creative Commons - Atribución - CompartirIgual. Pueden aplicarse cláusulas adicionales a los archivos multimedia.